首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monte-Carlo Calculations for Methane and Argon over a Wide Range of Density and Temperature,Including the Two-Phase Vapor-Liquid Region
Authors:T Hauschild  J M Prausnitz
Institution:Chemical Engineering Department and Chemical Sciences Division , Lawrence Berkeley Laboratory, University of California , Berkeley, CA, 94720
Abstract:Abstract

The Gibbs-ensemble simulation technique provides a powerful method to calculate vapor-liquid phase behavior 1]. To evaluate the configurational energy of a system of molecules, commonly used experessions describe the interaction between two molecules. Contributions from higher-body forces are usually implicitly taken into account by adjusting two-body potential parameters to give agreement with experimental data. Explicit expressions for higher-body potentials are not commonly used in simulations 8]. The work by Smit et al. 9] gives the appropriate expressions to evaluate the pressure as well as the chemical potential from a density-dependent two-body potential in an NVT ensemble.

In the present work, contributions to the potential from two-body interactions are separated from those due to higher-body interactions; to take higher-body forces into account, a mean-field term, proportional to (density)0.9, is added to the two-body potential. NPT-simulations over a wide range of temperature and density, as well as Gibbs-ensemble simulations, are used to evaluate phase behavior of argon and of methane. The results indicate that a simple mean-field correction to the “true” two-body Kihara potential provides good agreement between experiment and simulation.
Keywords:Gibbs ensemble  density dependant potentials argon  methane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号