首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissipative particle dynamics simulation of the soft micro actuator using polymer chain displacement in electro-osmotic flow
Authors:Ramin Zakeri
Institution:1. Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iranr_zakeri@shahroodut.ac.ir
Abstract:ABSTRACT

In this research, the numerical simulation of a soft polymer micro actuator performance has been investigated using the dissipative particle dynamics method in electro-osmotic flow. Effective factors including electro-osmotic flow and polymer chain parameters have been studied. First of all, considering a wide range of electro-osmotic parameters, the validation of analytical results is carried out in a simple micro channel. The electric field and zeta potential changes are linearly related to the flow rate, and the kh parameter behaves nonlinearly to around the kh?=?10. In the following, a convergent–divergent channel is used for the soft micro actuator simulation in which a polymer chain as a heart of actuation is embedded in the middle. As the main control parameter, the direction of the electric field is changed every 4?s, and it leads to a reciprocating motion. The numerical results indicate that the displacement of the soft polymer chain will be increased by enhancing the electric field, the number of beads, decreasing the harmonic bond coefficient and also exposing more length of a polymer chain in front of fluid flow. The results of this study may be useful for some future applications such as artificial fibres and muscles.
Keywords:Dissipative particle dynamics (DPD)  soft micro actuator  electro-osmotic flow  micro channel  polymer chain
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号