首页 | 本学科首页   官方微博 | 高级检索  
     


Dependence of the initial adhesion of biofilm forming Pseudomonas putida mt2 on physico-chemical material properties
Authors:Dominik Montag  Marion Frant  Harald Horn
Affiliation:1. Department of Biomaterials , Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba) , Rosenhof, 37308 , Heilbad Heiligenstadt , Germany;2. Karlsruher Institute of Technology (KIT), Engler Bunte Institute for Water Chemistry and Water Technology , Engler Bunte Ring 1, Karlsruhe , 76131 , Germany
Abstract:Bacterial adhesion is strongly dependent on the physico-chemical properties of materials and plays a fundamental role in the development of a growing biofilm. Selected materials were characterized with respect to their physico-chemical surface properties. The different materials, glass and several polymer foils, showed a stepwise range of surface tensions (γs) between 10.3 and 44.7 mN m?1. Measured zeta potential values were in the range between ?74.8 and ?28.3 mV. The initial bacterial adhesion parameter q max was found to vary between 6.6 × 106 and 28.1 × 106 cm?2. By correlation of the initial adhesions kinetic parameters with the surface tension data, the optimal conditions for the immobilization of Pseudomonas putida mt2 were found to be at a surface tension of 24.7 mN m?1. Both higher and lower surface tensions lead to a smaller number of adherent cells per unit surface area. Higher energy surfaces, commonly termed hydrophilic, could constrain bacterial adhesion because of their more highly ordered water structure (exclusion zone) close to the surface. At low energy surfaces, commonly referred to as hydrophobic, cell adhesion is inhibited due to a thin, less dense zone (depletion layer or clathrate structure) close to the surface. Correlation of q max with zeta potential results in a linear relationship. Since P. putida carries weak negative charges, a measurable repulsive effect can be assumed on negative surfaces.
Keywords:bacterial adhesion  biofilm development  surface energy  zeta potential  adhesion barrier  polymer substratum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号