首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis and Characterization of Templated Mesoporous Materials Using Molecular Simulation
Authors:Flor R Siperstein  Keith E Gubbins
Institution:Department of Chemical Engineering , North Carolina State University , Raleigh, NC, 27695-7905, USA
Abstract:Abstract

Lattice Monte Carlo simulations are used to calculate equilibrium properties of surfactant-solvent-silica liquid-crystal systems under no-polymerization conditions. The formation of a high-surfactant high-silica concentration phase in equilibrium with a dilute phase is observed when the surfactant-silica interactions are stronger than the surfactant-solvent interactions. Different silica structures that are similar to the M41 family are observed, depending on the overall concentration of the system. The formation of a hexagonal phase is favored at a surfactant/silica ratio of 0.2, whereas a lamellar phase is observed a surfactant/silica ratio of 1.

Argon adsorption properties on a model porous structure of the MCM-41 type prepared using this mimetic simulation protocol are calculated using grand canonical Monte Carlo simulation. Heats of adsorption are calculated from fluctuations in the energy and number of molecules 1] following the work of Nicholson and Parsonage Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press, London), 1982, p 97 8 pp]. A decrease in the heats of adsorption for coverage less than one statistical monolayer is evidence of surface heterogeneity. The results are in qualitative agreement with experimental measurements for argon on MCM-41.
Keywords:Templated materials  Surfactant  Silica  Hexagonal phase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号