Microscopic versus macroscopic diffusion in model membranes by electron spin resonance spectral-spatial imaging. |
| |
Authors: | Y K Shin U Ewert D E Budil J H Freed |
| |
Affiliation: | Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853. |
| |
Abstract: | The macroscopic and the microscopic diffusion coefficients of a phospholipid spin label (16-PC) in the model membrane 1-palmitoyl-2-oleoyl-sn-glycero-phosphatidylcholine have been measured simultaneously in the same sample utilizing the new technique of spectral-spatial electron spin resonance imaging. The macroscopic diffusion coefficient Dmacro for self-diffusion of 16-PC spin label is obtained from imaging the concentration profiles as a function of time, and it is (2.3 +/- 0.4) x 10(-8) cm2/s at 22 degrees C. The microscopic diffusion coefficient Dmicro for relative diffusion of the spin probes is obtained from the variation of the spectral line broadening with spin label concentration, which is due to spin-spin interactions. Dmicro is found to be substantially greater than Dmacro for the same sample at the same conditions, and is estimated to be at least (1.0 +/- 0.4) x 10(-7) cm2/s. Possible sources for their difference are briefly discussed in terms of the models used for Dmicro. |
| |
Keywords: | |
|
|