首页 | 本学科首页   官方微博 | 高级检索  
     


Specificity and control of choline-O-sulfate transport in filamentous fungi
Authors:N Bellenger  P Nissen  T C Wood  I H Segel
Abstract:Choline-O-sulfate uptake by Penicillium notatum showed the following characteristics. (i) Transport was mediated by a permease which is highly specific for choline-O-sulfate. No significant inhibition of transport was caused by choline, choline-O-phosphate, acetylcholine, ethanolamine-O-phosphate, ethanolamine-O-sulfate, methanesulfonyl choline, 2-aminoethane thiosulfate, or the monomethyl or dimethyl analogues of choline-O-sulfate. Similarly, no significant inhibition was caused by any common sulfur amino acid or inorganic sulfur compound. Mutants lacking the inorganic sulfate permease possessed the choline-O-sulfate permease at wild-type levels. (ii) Choline-O-sulfate transport obeyed saturation kinetics (K(m) = 10(-4) to 3 x 10(-4)m; V(max) = 1 to 6 mumoles per g per min). The kinetics of transport between 10(-9) and 10(-1)m external choline-O-sulfate showed that only one saturable mechanism is present. (iii) Transport was sensitive to 2,4-dinitrophenol, azide, N-ethylmaleimide, p-chloromercuribenzoate, and cyanide. Ouabain, phloridzin, and eserine had no effect. (iv) Transport was pH-dependent with an optimum at pH 6. Variations in the ionic strength of the incubation medium had no effect. (v) Transport was temperature-dependent with a Q(10) of greater than 2 between 3 and 40 C. Transport decreased rapidly above 40 C. (vi) Ethylenediaminetetraacetate (sodium salts, pH 6) had no effect, nor was there any stimulation by metal or nonmetal ions. Cu(++), Ag(+), and Hg(++) were inhibitory. (vii) The initial rate at which the ester is transported was independent of intracellular hydrolysis. After long periods of incubation (> 10 min), a significant proportion of the transported choline-O-sulfate was hydrolyzed intracellulary. In the presence of 5 x 10(-3)m external choline-O-sulfate, the mycelia accumulated choline-O-sulfate to an apparent intracellular concentration of 0.075 m by 3 hr. Transport was unidirectional. No efflux or exchange of (35)S-choline-O-sulfate was observed when preloaded mycelia were suspended in buffer alone or in buffer containing a large excess of unlabeled choline-O-sulfate. (viii) The specific transport activity of the mycelium depended on the sulfur source used for growth. (ix) Sulfur starvation of sulfur-sufficient mycelium resulted in an increase in the specific transport activity of the mycelium. This increase was prevented by cycloheximide, occurred only when a metabolizable carbon source was present, and resulted from an increase in the V(max) of the permease, rather than from a decrease in K(m). The increase could be partially reversed by refeeding the mycelia with unlabeled choline-O-sulfate, sulfide, sulfite, l-homocysteine, l-cysteine, or compounds easily converted to cysteine. The results strongly suggested that the choline-O-sulfate permease is regulated primarily by repression-derepression, but that intracellular choline-O-sulfate and cysteine can act as feedback inhibitors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号