Ontogeny of osmoregulation in postembryonic fish: a review |
| |
Authors: | Varsamos Stamatis Nebel Catherine Charmantier Guy |
| |
Affiliation: | Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5171 UM2-IFREMER-CNRS Génome Populations Interactions Adaptation, Université Montpellier II, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France. |
| |
Abstract: | Salinity and its variations are among the key factors that affect survival, metabolism and distribution during the fish development. The successful establishment of a fish species in a given habitat depends on the ability of each developmental stage to cope with salinity through osmoregulation. It is well established that adult teleosts maintain their blood osmolality close to 300 mosM kg(-1) due to ion and water regulation effected at several sites: tegument, gut, branchial chambers, urinary organs. But fewer data are available in developing fish. We propose a review on the ontogeny of osmoregulation based on studies conducted in different species. Most teleost prelarvae are able to osmoregulate at hatch, and their ability increases in later stages. Before the occurrence of gills, the prelarval tegument where a high density of ionocytes (displaying high contents of Na+/K+-ATPase) is located appears temporarily as the main osmoregulatory site. Gills develop gradually during the prelarval stage along with the numerous ionocytes they support. The tegument and gill Na+/K+-ATPase activity varies ontogenetically. During the larval phase, the osmoregulatory function shifts from the skin to the gills, which become the main osmoregulatory site. The drinking rate normalized to body weight tends to decrease throughout development. The kidney and urinary bladder develop progressively during ontogeny and the capacity to produce hypotonic urine at low salinity increases accordingly. The development of the osmoregulatory functions is hormonally controlled. These events are inter-related and are correlated with changes in salinity tolerance, which often increases markedly at the metamorphic transition from larva to juvenile. In summary, the ability of ontogenetical stages of fish to tolerate salinity through osmoregulation relies on integumental ionocytes, then digestive tract development and drinking rate, developing branchial chambers and urinary organs. The physiological changes leading to variations in salinity tolerance are one of the main basis of the ontogenetical migrations or movements between habitats of different salinity regimes. |
| |
Keywords: | Ontogeny Osmoregulation Fish Larvae Ionocyte Integument Gill Gut Urinary organs |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|