首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of L-type Ca channels in Ca2+ accumulation and changes in distribution of myosin heavy chain and SERCA isoforms in rat M. soleus under gravitational unloading
Authors:Mukhina A M  Altaeva E G  Nemirovskaia T L  Shenkman B S
Institution:Institute for Bio-Medical Problems, Khoroshevskoye shosse, 76-a, Moscow, Russia.
Abstract:It is known that hindlimb unloading brings about the intracellular Ca2+ accumulation and MyHC slow-to-fast shift in m.soleus. SERCA (sarcoendoplasmatic reticulum Ca ATPase) function as a Ca pump to uptake to sarcoendoplasmatic reticulum after skeletal muscle contraction, and can modulate intracellular resting Ca level. The study was aimed at investigation of the role of intracellular Ca2+ level for MyHC and SERCA isoforms transformation in m.soleus under hindlimb unloading. To determine role of intracellular Ca we administrated nifedipin--specific blocker of L-type calcium channel in myofibers. We hypothesized that decrease of intracellular calcium level prevented-NFATc1 nuclear translocation and MyHC slow-to-fast transformation. 42 male Wistar rats (180-200 g) were divided in 3 groups: cage control (C, n = 14), 14 days HU (HU, n = 14), 14 days HU with 7 mg/kg/day of nifedipin administration with water (HUN, n = 14). The study has shown that increase of intracellular Ca2+ level under HU leads to MHC slow-to-fast shift via activation of calcineurin-NFATc1 signaling pathway. Percentage of muscle fibers with SERCA I increased under hindlimb unloading, being dependent of intracellular calcium level, percentage of muscle fibers with SERCA II decreased under hindlimb unloading but did not depend on calcium. We suppose that nifedipin administration decreases intracellular Ca level, prevents MHC slow-to-fast shift via prevention of NFATcl accumulation in nuclear extract of m.soleus, and prevent increase of SERCAI expression. The work was supported by grants RFBR N05-04-49255a, 04-04-49044, 05-04-08200-ofi-a, contract with Federal Agency for Science and Iinnovation N02.467.11.3005, and Presidium of RAS program "Basic sciences for medicine".
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号