首页 | 本学科首页   官方微博 | 高级检索  
   检索      


H2A- and H2E-derived CD4+CD25+ regulatory T cells: a potential role in reciprocal inhibition by class II genes in autoimmune thyroiditis
Authors:Morris Gerald P  Yan Yan  David Chella S  Kong Yi-Chi M
Institution:Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
Abstract:We recently described a novel H2E class II-transgenic model (A(-)E(+)) of experimental autoimmune thyroiditis (EAT) that permits disease induction with heterologous thyroglobulin (Tg), but unlike conventional susceptible strains, precludes self-reactivity to autologous mouse Tg. In transgenic E(+)B10 (A(+)E(+)) mice, the presence of endogenous H2A genes is protective against H2E-mediated thyroiditis, inhibiting EAT development. The suppressive effect of H2A genes on H2E-mediated thyroiditis mirrors previous reports of H2E suppression on H2A-mediated autoimmune diseases, including EAT. The mechanism of the reciprocal-suppressive effect between class II genes is unclear, although the involvement of regulatory T cells has been proposed. We have recently reported that CD4(+)CD25(+) regulatory T cells mediate peripheral tolerance induced with mouse Tg in CBA mice. To determine whether these cells play a role in our E(+)-transgenic model, we first confirmed the existence of CD4(+)CD25(+) T cells regulating thyroiditis in E(+)B10.Ab(0) (A(-)E(+)) and B10 (A(+)E(-)) mice by i.v. administration of CD25 mAb before EAT induction. The depletion of CD4(+)CD25(+) T cells enhanced thyroiditis induction in the context of either H2E or H2A. Moreover, reconstitution of CD4(+)CD25(+) T cells from naive B10 mice restored resistance to EAT. E(+)B10 (A(+)E(+)) mice were also depleted of CD4(+)CD25(+) T cells before the challenge to determine their role in thyroiditis in the presence of both H2A and H2E genes. Depletion of CD4(+)CD25(+) regulatory T cells offset the suppression of H2E-mediated thyroiditis by H2A. Thus, these regulatory T cells may be involved in the reciprocal-suppressive effect between class II genes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号