首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Autoradiographic Method for Isolation of Diverse Microbial Species with Unique Catabolic Traits
Authors:J Dunbar  D Wong  M J Yarus  and L J Forney
Abstract:A novel autoradiographic method for isolation of bacteria with unique catabolic traits was developed to overcome many of the limitations of traditional selective enrichment techniques. The method consists of five steps. (i) An environmental sample is directly plated (without enrichment) on a microporous filter atop a solid medium that allows cultivation of diverse kinds of microorganisms. (ii) Once colonies form, two replicas of the filter are prepared and the colonies are regrown. (iii) The replica filters are starved 24 to 72 h to deplete intracellular carbon reserves and then (iv) placed on Na(inf2)(sup35)SO(inf4)-containing solid media with and without a test compound. (v) Following an incubation period, the replica filters are exposed to film in order to identify colonies that incorporate more (sup35)S into cell biomass in the presence of the test compound than in its absence, providing presumptive evidence for metabolism of the compound. The colonies identified in this manner can be recovered from the master filter. To demonstrate this technique, bacteria capable of degrading benzoate were isolated from a single soil slurry by traditional enrichment as well as by autoradiography. From the enrichment culture, a single isolate able to degrade benzoate was obtained. In contrast, 18 distinct strains were obtained by purifying 19 putative benzoate-degrading colonies identified by autoradiography. Each of the 18 strains was able to completely transform the substrate, as determined by high-performance liquid chromatography analyses. The doubling times of a subset of the isolates grown in benzoate medium ranged from 1.4 to 17.1 h, whereas the doubling time of the isolate obtained by enrichment was 2.0 h. These data demonstrate that the method described here can be used to obtain a collection of diverse organisms able to metabolize a specific compound.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号