首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc, Mytilus edulis
Authors:Hattan S J  Laue T M  Chasteen N D
Institution:Departments of Chemistry and Biochemistry & Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA.
Abstract:In the bivalve mollusc Mytilus edulis shell thickening occurs from the extrapallial (EP) fluid wherein secreted shell matrix macromolecules are thought to self-assemble into a framework that regulates the growth of CaCO(3) crystals, which eventually constitute approximately 95% of the mature shell. Herein is the initial report on the purification and characterization of a novel EP fluid glycoprotein, which is likely a building block of the shell-soluble organic matrix. This primary EP fluid protein comprises 56% of the total protein in the fluid and is shown to be a dimer of 28,340 Da monomers estimated to be 14.3% by weight carbohydrate. The protein is acidic (pI = 4.43) and rich in histidine content (11.14%) as well as in Asx and Glx residues (25.15% total). The N terminus exhibits an unusual repeat sequence of histidine and aspartate residues that occur in pairs: NPVDDHHDDHHDAPIVEHHD approximately. Ultracentrifugation and polyacrylamide gel electrophoresis demonstrate that the protein binds calcium and in so doing assembles into a series of higher order protomers, which appear to have extended structures. Circular dichroism shows that the protein-calcium binding/protomer formation is coupled to a significant rearrangement in the protein's secondary structure in which there is a major reduction in beta-sheet with an associated increase in alpha-helical content of the protein. A model for shell organic matrix self-assembly is proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号