Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity |
| |
Authors: | Manna Sunil K Sreenivasan Yashin Sarkar Abira |
| |
Affiliation: | Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nacharam, Hyderabad, India. manna@cdfd.org.in |
| |
Abstract: | Considering the potential role of interleukin-8 (IL-8) in inflammation, angiogenesis, tumorogenesis, and metastasis, and the involvement of different cell types especially neutrophils and macrophages in those processes, the regulation of IL-8-mediated biological responses is important. In this report we provide evidences that oleandrin, a cardiac glycoside potentially inhibited IL-8-, formyl peptide (FMLP)-, EGF-, or nerve growth factor (NGF)-, but not IL-1- or TNF-induced NF-kappaB activation in macrophages. Oleandrin inhibited IL-8-, but not TNF-induced NF-kappaB-dependent genes expression. Oleandrin inhibited the binding of IL-8, EGF, or NGF, but not IL-1 or TNF. It decreased almost 79% IL-8 binding without altering affinity towards IL-8 receptors and this inhibition of IL-8 binding was observed in isolated membrane. The IL-8, anti-IL-8Rs antibodies, or protease inhibitors were unable to protect oleandrin-mediated inhibition of IL-8 binding. Phospholipids significantly protected oleandrin-mediated inhibition of IL-8 binding thereby restoring IL-8-induced NF-kappaB activation. Oleandrin altered the membrane fluidity as detected by microviscosity parameter and a decrease in diphenylhexatriene, a lipid binding fluorophore binding in a dose-dependent manner. Overall, our results suggest that oleandrin inhibits IL-8-mediated biological responses in diverse cell types by modulating IL-8Rs through altering membrane fluidity and microviscosity. The study might help to regulate IL-8-mediated biological responses involved in inflammation, metastasis, and neovascularization. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|