首页 | 本学科首页   官方微博 | 高级检索  
     


CTC staining and counting of actively respiring bacteria in natural stone using confocal laser scanning microscopy
Authors:Bartosch S  Mansch R  Knötzsch K  Bock E
Affiliation:Microbiology and Gut Biology Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK. s.bartosch@dundee.ac.uk
Abstract:A method was established for staining and counting of actively respiring bacteria in natural stone by using the tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC) in combination with confocal laser scanning microscopy (CLSM). Applying 5 mM CTC for 2 h to pure cultures of representative stone-inhabiting microorganisms showed that chemoorganotrophic bacteria and fungi-in contrast to lithoautotrophic nitrifying bacteria-were able to reduce CTC to CTF, the red fluorescing formazan crystals of CTC. Optimal staining conditions for microorganisms in stone material were found to be 15 mM CTC applied for 24 h. The cells could be visualized on transparent and nontransparent mineral materials by means of CLSM. A semi-automated method was used to count the cells within the pore system of the stone. The percentage of CTC-stained bacteria was dependent on temperature and humidity of the material. At 28 degrees C and high humidity (maximum water holding capacity) in the laboratory, about 58% of the total bacterial microflora was active. On natural stone exposed for 9 years at an urban exposure site in Germany, 52-56% of the bacterial microflora was active at the east, west, and north side of the specimen, while only 18% cells were active at the south side. This is consistent with microclimatic differences on the south side which was more exposed to sunshine thus causing UV and water stress as well as higher temperatures on a microscale level. In combination with CLSM, staining by CTC can be used as a fast method for monitoring the metabolic activity of chemoorganotrophic bacteria in monuments, buildings of historic interest or any art objects of natural stone. Due to the small size of samples required, the damage to these objects and buildings can be minimized.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号