首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Erythromycin-induced ribosome stalling and RNase J1-mediated mRNA processing in Bacillus subtilis
Authors:Yao Shiyi  Blaustein Joshua B  Bechhofer David H
Institution:Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA.
Abstract:Addition of erythromycin (Em) to a Bacillus subtilis strain carrying the ermC gene results in ribosome stalling in the ermC leader peptide coding sequence. Using Δ ermC , a deletion derivative of ermC that specifies the 254 nucleotide Δ ermC mRNA, we showed previously that ribosome stalling is concomitant with processing of Δ ermC mRNA, generating a 209 nucleotide RNA whose 5' end maps to codon 5 of the Δ ermC coding sequence. Here we probed for peptidyl-tRNA to show that ribosome stalling occurs after incorporation of the amino acid specified by codon 9. Thus, cleavage upstream of codon 5 is not an example of 'A-site cleavage' that has been reported for Escherichia coli . Analysis of Δ ermC mRNA processing in endoribonuclease mutant strains showed that this processing is RNase J1-dependent. Δ ermC mRNA processing was inhibited by the presence of stable secondary structure at the 5' end, demonstrating 5'-end dependence, and was shown to be a result of RNase J1 endonuclease activity, rather than 5'-to-3' exonuclease activity. Examination of processing in derivatives of Δ ermC that had codons inserted upstream of the ribosome stalling site revealed that Em-induced ribosome stalling can occur considerably further from the start codon than would be expected based on previous studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号