首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE FINE STRUCTURE OF NEUROMUSCULAR JUNCTIONS AND THE SARCOPLASMIC RETICULUM OF EXTRINSIC EYE MUSCLES OF FUNDULUS HETEROCLITUS
Authors:James F Reger
Institution:From the Department of Anatomy, University of Colorado School of Medicine, Denver
Abstract:The extrinsic eye muscles of the killifish (F. heteroclitus) were fixed in OSO4 (pH 7.6) and subsequently dehydrated, embedded, and sectioned for electron microscopy. The fine structures of neuromuscular junctions and of sarcoplasmic reticulum were then observed. The neuromuscular junction consists of the apposition of axolemma (60 to 70 Å) and sarcolemma (90 to 100 Å), with an intervening cleft space of 200 to 300 Å, forming a synaptolemma 400 to 500 Å thick. The terminal axons contain synaptic vesicles, mitochondria, and agranular reticulum. The subsynaptic sarcolemma lacks the infolding arrangement characteristic of neuromuscular junctions from other vertebrate skeletal muscle, making them more nearly like that of insect neuromuscular junctions. A comparison between the folded and non-folded subsynaptic membrane types is made and discussed in terms of comparative rates of acetylcholine diffusion from the synaptic cleft and resistances of the clefts and subsynaptic membranes. The sarcoplasmic reticulum consists of segmentally arranged, membrane-limited vesicles and tubular and cisternal elements which surround individual myofibrils in a sleeve-like arrangement. Triadic differentiation occurs at or near the A-I junction. Unit sleeves span the A and I bands alternately and consist of closed terminal cisternae interconnected across the A and I bands by tubular cisternae. The thickness of the sarcoplasmic membranes increases from 30 to 40 Å in intertriadic regions to 50 to 70 Å at the triads. The location of the triads is compared with previously described striated muscle from Ambystoma larval myotomes, cardiac and sartorius muscles of the albino rat, mouse limb muscle, chameleon lizard muscle, and insect muscle, with reference to their possible role in intracellular impulse conduction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号