首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular determinants of cardiac K(ATP) channel activation by epoxyeicosatrienoic acids
Authors:Lu Tong  Hong Min-Pyo  Lee Hon-Chi
Institution:Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. Lu.tong@mayo.edu
Abstract:We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号