首页 | 本学科首页   官方微博 | 高级检索  
     


Ionic basis for excitability of normal rat kidney (NRK) fibroblasts
Authors:Harks E G A  Torres J J  Cornelisse L N  Ypey D L  Theuvenet A P R
Affiliation:Department of Cell Biology, University of Nijmegen, Nijmegen, The Netherlands.
Abstract:Ionic membrane conductances of normal rat kidney (NRK) fibroblasts were characterized by whole-cell voltage-clamp experiments on single cells and small cell clusters and their role in action potential firing in these cells and in monolayers was studied in current-clamp experiments. Activation of an L-type calcium conductance (GCaL) is responsible for the initiation of an action potential, a calcium-activated chloride conductance (GCl(Ca)) determines the plateau phase of the action potential, and an inwardly rectifying potassium conductance (GKir) is important for the generation of a resting potential of approximately -70 mV and contributes to action potential depolarization and repolarization. The unique property of the excitability mechanism is that it not only includes voltage-activated conductances (GCaL, GKir) but that the intracellular calcium dynamics is also an essential part of it (via GCl(Ca)). Excitability was found to be an intrinsic property of a fraction (approximately 25%) of the individual cells, and not necessarily dependent on gap junctional coupling of the cells in a monolayer. Electrical coupling of a patched cell to neighbor cells in a small cluster improved the excitability because all small clusters were excitable. Furthermore, cells coupled in a confluent monolayer produced broader action potentials. Thus, electrical coupling in NRK cells does not merely serve passive conduction of stereotyped action potentials, but also seems to play a role in shaping the action potential.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号