首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Longitudinal gradients of collagen and elastin gene expression in the porcine aorta
Authors:J M Davidson  K E Hill  M L Mason  M G Giro
Abstract:The physical and chemical properties of the mammalian aorta are known to vary as a function of distance from the heart. These properties are highly dependent collagen and elastic fibers. In order to evaluate the mechanisms which regulate the accumulation of these two connective tissue proteins, gene expression was evaluated at both the biosynthetic and messenger RNA levels. Short-term (3 h) explant cultures of the medial portion of four segments of the descending aorta in newborn pigs were incubated in the presence of 3H] proline. Collagen production was quantified by collagenase digestion and elastin production was determined by immunoprecipitation. Between the conus arteriosus and the bifurcation of the iliac arteries, relative collagen synthesis increased 2-fold (from 5.8 to 12.0% of total protein synthesis), while relative elastin synthesis declined 10-fold (from 16.4 to 1.6% of total protein synthesis). Similarly, collagen production increased more than 7-fold (from 6.7 to 49.8 X 10(3) molecules/cell/h) while elastin production was reduced more than 3-fold (from 71.8 to 21.0 X 10(3) molecules/cell/h) along this developmental gradient. Elastin synthesis appeared to be controlled to a significant extent by the availability of elastin mRNA, since both cell-free translation and molecular hybridization to a cloned elastin gene probe showed gradients of elastin gene expression. Similarly, collagen synthesis was apparently regulated, at least in part, by an inverse gradient of collagen mRNA, as measured with a cloned cDNA for the pro-alpha 1(I) collagen gene. Marked changes in the amount of non-elastin protein synthesis accompanied differentiation and accounted for larger changes in relative synthesis. These results suggest that the phenotype of the cells of the porcine artery wall is distinct in different regions of this organ at this developmental stage.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号