首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of caffeine-pretreatment on SCE and chromosome aberrations induced by monofunctional- and bifunctional-mitomycin C in bloom syndrome lymphocytes
Authors:Yukimasa Shiraishi  Avery A. Sandberg
Affiliation:1. Laboratory of Human Cytogenetics, Department of Anatomy, Kochi Medical School, Nanakoku-City, Kochi 781-51, Japan;2. Roswell Park Memorial Institute, Buffalo, NY 14263, U.S.A.
Abstract:Bloom syndrome (BS) lymphocytes, which are characterized by a high incidence (75.4 per cell) of SCE, were treated with caffeine (CAF) during the first cell cycle and with monofunctional-(M-MC) and bifunctional-(MC)mitomycin C during the second cycle. The effect on the SCE level was synergistic. The CAF-pretreated cells in combination with M-MC and MC post-treatments, had significantly higher (SCE values 152.5 and 167.9 SCE per cell, resp.) than those treated with M-MC or MC alone during the second cycle (101.1 and 116.4 SCE per cell, resp.). M-MC and MC in the presence of BrdU (without CAF) for 2 cell cycles increased SCE to 157.6 and 169.4 per cell (about twice the control level). M-MC + CAF and MC + CAF treatments for 2 cell cycles did not produce a synergistic effect on the SCE frequency in BS cells; the SCE level was not significantly greater than that with M-MC or MC alone. Normal cells treated with MC and CAF for 2 cycles had a maximum SCE frequency of 156 per cell. This suggests that cells with SCE frequencies above this level may not be able to survive, i.e., this is the “saturation” level of SCE. However, CAF alone had almost no effect on SCE in either BS or normal cells and did not produce multiple chromosome aberrations. The lack of CAF effect on BS cells suggests that the lesions in DNA strands of BS cells which lead to SCE are double-strand lesions. In normal cells CAF is known to significantly slow down DNA-chain growth; the reduced rate of DNA-chain growth in BS is an inherent defect of the cells. Therefore, though CAF enhanced SCE and chromosome aberrations (shattered chromosomes) in combination with alkylating agents, CAF alone did not significantly increase the SCE rate in either BS cells or in normal cells. Thus, processes which may induce SCE are not only related to retarded rate of DNA-chain growth, but also to breaks in the template strand permitting double-strand exchanges to occur.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号