首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation of 2,4,5-trichlorophenol and 2,3,5,6-tetrachlorophenol by combining pulse electric discharge with bioremediation
Authors:S. Chauhan  E. Yankelevich  V. M. Bystritskii  T. K. Wood
Affiliation:(1) Department of Chemical Engineering, University of Connecticut, Storrs, CT 06269-3222, USA e-mail: twood@uconnvm.uconn.edu Tel.: +1-860-486-2483 Fax: +1-860-486-2959, US;(2) Department of Physics and Astronomy, University of California, Irvine, California 92697-2575, USA, US
Abstract:Degradation of 2,4,5-trichlorophenol (2,4,5-TCP) and 2,3,5,6-tetrachlorophenol (TeCP) was studied using a two-stage approach that utilized efficient pulse electric discharge (PED) followed by biological degradation with a consortium from acclimated return activated sludge. The chlorinated phenols were treated in the PED reactor as an aerosol at a voltage of 55–60 kV, a frequency of 385 Hz, a current of 50–60, and with a 200-ns pulse. As determined by gas chromatography and mass spectrometry (GC/MS), the first stage converted 500 ppm 2,4,5-TCP to 163 ppm 2,4,5-TCP and dimethyldecene, dichloronaphthalenol, octyl acetate, and silyl esters. The total carbon content of 2,4,5-TCP after PED treatment was determined to be 228 ± 35 ppm. The remaining 2,4,5-TCP and the products formed were then mineralized by the acclimated activated sludge in shake flasks; the initial rate of degradation of 2,4,5-TCP was calculated to be 5 nmol min−1 mg protein−1 at 163 ppm initial concentration (three orders of magnitude higher than the only rate found in the literature). By combining the two techniques, a synergistic effect (2.3-fold increase in the concentration of 2,4,5-TCP degraded and 3.3-fold increase in total carbon degraded) was observed, in that bacteria without any treatment degraded a maximum of 70 ppm 2,4,5-TCP but after PED treatment 163 ppm 2,4,5-TCP was degraded. TeCP was also mineralized by the acclimated activated sludge after treatment with PED. This two-stage approach was also evaluated using a continuous 1-l fluidized-bed reactor. Received: 3 November 1998 / Received revision: 28 February 1999 / Accepted: 14 March 1999
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号