首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RAGE mediates accelerated diabetic vein graft atherosclerosis induced by combined mechanical stress and AGEs via synergistic ERK activation
Authors:Li Yuhuang  Liu Shuying  Zhang Zhengyu  Xu Qingbo  Xie Fukang  Wang Jingjing  Ping Suning  Li Chen  Wang Zhaojing  Zhang Min  Huang Jintao  Chen Dadi  Hu Liping  Li Chaohong
Institution:Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Abstract:

Aims/Hypothesis

Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor.

Methods

In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signal-regulated kinase (ERK) phosphorylation and Ki-67 expression were investigated.

Results

Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE.

Conclusion

RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanical stretching with and without AGEs. It may serve as a common molecular bridge between the two, accelerating vascular remodeling. This study provides potential drug targets and novel therapeutic strategies for the treatment of vascular diseases resulting from diabetes with hypertension.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号