首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein transfer from an aqueous phase into reversed micelles. The effect of protein size and charge distribution
Authors:R B Wolbert  R Hilhorst  G Voskuilen  H Nachtegaal  M Dekker  K Van't Riet  B H Bijsterbosch
Institution:Department of Biochemistry, Agricultural University, Wageningen, The Netherlands.
Abstract:Proteins are spontaneously transferred from an aqueous solution into reversed micelles, provided the aqueous phase has the proper composition. Besides the composition of the aqueous phase, the composition of the organic phase and the properties of the proteins also play a role. We studied uptake profiles of 19 proteins as a function of pH of the aqueous solution. The organic phase consisted of trioctylmethylammonium chloride and nonylphenol pentaethoxylate (Rewopal HV5) as surfactant, octanol as cosurfactant and isooctane as continuous phase. In all cases, except for rubredoxin, proteins were transferred at pH values above their isoelectric point. The pH where maximal solubilization takes place can be described by the relationship: pHoptimum = isoelectric point +0.11 x 10(-3) Mr -0.97. So, the larger the protein, the more charge is needed to provide the energy required for the adaptation of the micellar size to the protein size. For protein transfer into sodium di-(2-ethylhexyl)sulphosuccinate (AOT) reversed micelles a similar relationship was found. The percentage of protein transferred could be related to the symmetry of charge distribution over the protein. This symmetry was expressed as the % of random electric moments on a protein that is larger than the effective electric moment of the protein (% S) Barlow, D. J. and Thornton, J. M. (1986) Biopolymers 25, 1717]. The larger the value of % S, the more homogeneously the charges are distributed and the lower the percentage transfer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号