首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cooperative free energies for nested allosteric models as applied to human hemoglobin.
Authors:S J Gill  C H Robert  M Coletta  E Di Cera  and M Brunori
Abstract:A model is developed for ligand binding to human hemoglobin that describes the detailed cooperative free-energies for each of the ten different ligated (cyanomet) species as observed by Smith and Ackers (Smith, F.R., and G.K. Ackers. 1985. Proc. Natl. Acad. Sci. USA.82:5347-5351). The approach taken here is an application of the general principle of hierarchical levels of allosteric control, or nesting, as suggested by Wyman (Wyman, J. 1972. Curr. Top. Cell. Reg. 6:207-223). The model is an extension of the simple two-state MWC model (Monod, J., J. Wyman, and J.P. Changeux. 1965. J. Mol. Biol. 12:88-118) using the idea of cooperative binding within the T (deoxy) form of the macromolecule, and has recently been described as a "cooperon" model (Di Cera, E. 1985. Ph.D. thesis). The T-state cooperative binding is described using simple interaction rules first devised by Pauling (Pauling, L. 1935. Proc. Natl. Acad. Sci. USA. 21:186-191). In this application three parameters suffice to describe the cooperative free-energies of the 10 ligated species of cyanomet hemoglobin. The redox process in the presence of cyanide, represented as a Hill plot, is simulated from Smith and Ackers' cooperative free-energies and is compared with available electrochemical binding measurements.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号