首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of 6-thioguanine on the stability of duplex DNA
Authors:Bohon Jen  de los Santos Carlos R
Institution:Department of Physiology and Biophysics, State University of New York at Stony Brook Stony Brook, NY 11794-8651, USA.
Abstract:The incorporation of 6-thioguanine (S6G) into DNA is a prerequisite for its cytotoxic action, but duplex structure is not significantly perturbed by the presence of the lesion J. Bohon and C. R. de los Santos (2003) Nucleic Acids Res., 31, 1331–1338]. It is therefore possible that the mechanism of cytotoxicity relies on a loss of stability rather than a pathway involving direct structural recognition. The research described here focuses on the changes in thermodynamic properties of duplex DNA owing to the introduction of S6G as well as the kinetic properties of base pairs involving S6G. Replacement of a guanine in a G•C pair by S6G results in ~1 kcal/mol less favorable Gibbs free energy of duplex formation at 37°C. S6G•T and G•T mismatch-containing duplexes have almost identical Gibbs free energy at 37°C, with values ~3 kcal/mol less favorable than that of the control. Base pair stability is affected by S6G. The lifetime of the normal G•C base pair is ~125 ms, whereas that of the G•T mismatch is below the detection limit. The lifetimes of S6G•C and S6G•T pairs are ~7 and 2 ms, respectively, demonstrating that, although S6G significantly decreases the stability of the pairing with cytosine, it slightly increases that of a mismatch.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号