首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional interaction of protein kinase Calpha with the tyrosine kinases Syk and Src in human platelets
Authors:Pula Giordano  Crosby David  Baker Julie  Poole Alastair W
Institution:Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom.
Abstract:There is a high degree of cross-talk between tyrosine phosphorylation and the serine/threonine phosphorylation signaling pathways. Here we show a physical and functional interaction between the classical protein kinase C isoform (cPKC), PKCalpha, and two major nonreceptor tyrosine kinases in platelets, Syk and Src. In the presence of the cPKC-selective inhibitor Go6976, platelet 5-hydroxytryptamine release was abolished in response to co-activation of glycoproteins VI and Ib-IX-V by the snake venom alboaggregin A, whereas platelet aggregation was substantially inhibited. Of the two platelet cPKCs, PKCalpha but not PKCbeta was activated, occurring in an Syk- and phospholipase C-dependent manner. Syk and PKCalpha associate in a stimulation-dependent manner, requiring Syk but not PKC activity. PKCalpha and Syk also co-translocate from the cytosol to the plasma membrane upon platelet activation, in a manner dependent upon the activities of both kinases. Although PKCalpha is phosphorylated on tyrosine downstream of Syk, we provide evidence against phosphorylation of Syk by PKCalpha, consistent with a lack of effect of PKCalpha inhibition on Syk activity. PKCalpha also associates with Src; although in contrast to interaction with Syk, PKCalpha activity is required for the association of these kinases but not the stimulation-induced translocation of Src to the cell membrane. Finally, the activity of Src is negatively regulated by PKC, as shown by potentiation of Src activity in the presence of the PKC inhibitors GF109203X or Go6976. Therefore, there is a complex interplay between PKCalpha, Syk, and Src involving physical interaction, phosphorylation, translocation within the cell, and functional activity regulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号