首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microstructural and Electronic Origins of Open‐Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends
Authors:Sonya A Mollinger  Alberto Salleo
Institution:1. Department of Applied Physics, Stanford University, Stanford, USA;2. Department of Materials Science and Engineering, Stanford University, Stanford, USA
Abstract:Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open‐circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio‐regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher‐energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest‐energy charge transfer state distribution.
Keywords:bulk heterojunctions  charge transfer states  organic photovoltaics  semiconducting polymers  ternary blends
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号