首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fine‐Tuning the Sn Content in CZTSSe Thin Films to Achieve 10.8% Solar Cell Efficiency from Spray‐Deposited Water–Ethanol‐Based Colloidal Inks
Authors:Gerardo Larramona  Sergiu Levcenko  Stéphane Bourdais  Alain Jacob  Christophe Choné  Bruno Delatouche  Camille Moisan  Justus Just  Thomas Unold  Gilles Dennler
Institution:1. IMRA Europe S.A.S, Sophia Antipolis, France;2. Helmholtz‐Zentrum Berlin für Materialien und Energie (HZB), Berlin, Germany
Abstract:Thin film solar cells with Al/ITO/ZnO/CdS/CZTSSe/Mo‐glass structure are fabricated employing a fast and low‐cost preparation procedure using an aqueous ink deposited by nonpyrolytic spray, followed by high temperature crystallization and selenization steps. Capacitance–voltage measurements on previously reported devices with >8% efficiency under 1 sun irradiation show a charge carrier density of the order of 1017 cm?3. Moreover, admittance spectroscopy indicates the presence of mid‐bandgap defects that are tentatively attributed to a Sn deficit in the film. In order to reduce the number of these deep defects within the active layer of our solar cells, the Sn content is tuned in the precursor ink. Their morphology, elemental composition, crystal phases, capacitance–voltage profiling, admittance, photoluminescence, and photovoltaic performances are characterized. The results indicate that tuning the Sn content offers a strong leverage upon some key properties of the active layer, in particular the grain size, and the charge carrier and defect density. By employing this leverage to optimize the performance of our CZTSSe layers, the cell performances are increased to 10.0% without antireflection coating (ARC) and to 10.8% (on 0.25 cm2) with an ARC.
Keywords:colloids  CZTSSe  kesterites  sprays  thin film solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号