首页 | 本学科首页   官方微博 | 高级检索  
     


Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design
Authors:Joel A. Haber  Eitan Anzenburg  Junko Yano  Christian Kisielowski  John M. Gregoire
Affiliation:1. Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, USA;2. Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA, USA;3. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA;4. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Abstract:Ce‐rich mixed metal oxides comprise a recently discovered class of ­electrocatalysts for the oxygen evolution reaction (OER). In particular, at current densities below 10 mA cm?2, Ni0.3Fe0.07Co0.2Ce0.43Ox exhibits ­superior activity compared to the corresponding transition metal oxides, despite the relative inactivity of ceria. To elucidate the enhanced activity and underlying catalytic mechanism, detailed structural characterization of this quinary oxide electrocatalyst is reported. Transmission electron microscopy imaging of cross‐section films as‐prepared and after electrochemical testing reveals a stable two‐phase nanostructure composed of 3–5 nm diameter crystallites of fluorite CeO2 intimately mixed with 3–5 nm crystallites of transition metal oxides alloyed in the rock salt NiO structure. Dosing experiments demonstrate that an electron flux greater than ≈1000 e Å?2 s?1 causes the inherently crystalline material to become amorphous. A very low dose rate of 130 e Å?2 s?1 is employed for atomic resolution imaging using inline holography techniques to reveal a nanostructure in which the transition metal oxide nanocrystals form atomically sharp boundaries with the ceria nanocrystals, and these results are corroborated with extensive synchrotron X‐ray absorption spectroscopy measurements. Ceria is a well‐studied cocatalyst for other heterogeneous and electrochemical reactions, and our discovery introduces biphasic cocatalysis as a design concept for improved OER electrocatalysts.
Keywords:aberration corrected electron microscopy  electrocatalysts  nanostructures  oxygen evolution reaction  X‐ray absorption spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号