首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Charge‐Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90%
Authors:Jonathan A Bartelt  David Lam  Timothy M Burke  Sean M Sweetnam  Michael D McGehee
Institution:1. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA;2. Department of Physics, Stanford University, Stanford, CA, USA
Abstract:To increase the efficiency of bulk heterojunction (BHJ) solar cells beyond 15%, 300 nm thick devices with 0.8 fill factor (FF) and external quantum efficiency (EQE) >90% are likely needed. This work demonstrates that numerical device simulators are a powerful tool for investigating charge‐carrier transport in BHJ devices and are useful for rapidly determining what semiconductor pro­perties are needed to reach these performance milestones. The electron and hole mobility in a BHJ must be ≈10?2 cm2 V?1 s?1 in order to attain a 0.8 FF in a 300 nm thick device with the recombination rate constant of poly(3‐hexyl­thiophene):6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM). Thus, the hole mobility of donor polymers needs to increase from ≈10?4 to ≈10?2 cm2 V?1 s?1 in order to significantly improve device performance. Furthermore, the charge‐carrier mobility required for high FF is directly proportional to the BHJ recombination rate constant, which demonstrates that decreasing the recombination rate constant could dramatically improve the efficiency of optically thick devices. These findings suggest that researchers should prioritize improving charge‐carrier mobility when synthesizing new materials for BHJ solar cells and highlight that they should aim to understand what factors affect the recombination rate constant in these devices.
Keywords:bulk heterojunctions  fill factor  organic electronics  photovoltaics  solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号