首页 | 本学科首页   官方微博 | 高级检索  
     


Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes
Authors:Chao Su  Wei Wang  Meilin Liu  Moses O. Tadé  Zongping Shao
Affiliation:1. Department of Chemical Engineering, Curtin University, Perth, WA, Australia;2. School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, Atlanta, GA, USA;3. State Key Laboratory of Materials‐Oriented Chemical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
Abstract:Symmetrical solid oxide fuel cells (SOFCs) have attracted increasing attention due to their potential for improved thermomechanical compatibility of the electrolyte and the electrodes, reduced fabrication cost, and enhanced immunity to coking and sulfur poisoning. While the electrode materials of symmetrical SOFCs are initially limited to those with stable phase structures under both reducing and oxidizing atmospheres, many novel electrode materials are currently being developed and investigated that may undergo a beneficial phase transition or reduction in a reducing atmosphere, although the same material may be used initially for the construction of both anode and cathode. Here, the advances made in the development of electrode materials and structures for symmetrical SOFCs are summarized, including single‐phase electrodes, multi‐phase (composite) electrodes, and those that are reducible upon exposure to a reducing atmosphere. The electrical conductivity, thermomechanical properties, and redox behavior of these electrode materials, together with their performance and stability in different SOFCs, are discussed and analyzed. The problems associated with different types of symmetrical SOFCs are outlined and the materials that show promise as symmetrical electrodes are highlighted, offering critical insights and useful guidelines for knowledge‐based rational design of better electrodes for commercially viable symmetrical SOFCs.
Keywords:fuel cells  electrodes  perovskites  infiltration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号