首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Contact‐Induced Mechanisms in Organic Photovoltaics: A Steady‐State and Transient Study
Authors:Sarah R Cowan  Jian V Li  Dana C Olson  Erin L Ratcliff
Institution:1. National Renewable Energy Laboratory, Golden, CO, USA;2. Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, USA
Abstract:The role of the contacts in thin‐film, blended heterojunctions (<100 nm thick) organic photovoltaics is explored, specifically considering concepts of carrier selectivity, injection, and extraction efficiency, relative to recombination. Contact effects are investigated by comparing two hole‐collecting interlayers: a phosphonic acid monolayer on indium tin oxide (ITO) and a nickel oxide thin film. The interlayers have equivalent work functions (≈5.4 eV) but widely variant energy band offsets relative to the lowest unoccupied molecular orbital of the acceptor (electron blocking versus not), which are coupled to large differences in carrier density. Trends in open‐circuit voltages (VOC) as a function of light intensity and temperature are compared and it is concluded that the dominant mechanism limiting VOC for high density of states contacts is free carrier injection, not surface recombination or extraction barriers. Transient photocurrent decay measurements confirm excess reinjected carriers decrease the extraction efficiency via increased recombination and decrease free carrier lifetime, even at high internal electric fields, due to space charge accumulation. These results demonstrate that the energetics and injection dynamics of the interface between interlayers and high carrier density electrodes (typically ITO and metals) must be considered with fabrication and processing of interlayers, in addition to possible carrier selectivity and the interface with the active layer.
Keywords:charge transport  electrodes  characterization tools  organic electronics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号