首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis
Authors:Wang Wei  Xu Jinping  Kirsch Thorsten
Institution:Department of Orthopaedics, University of Maryland School of Medicine, Baltimore 21201, USA.
Abstract:Maturation of epiphyseal growth plate chondrocytes plays an important role in endochondral bone formation. Previously, we demonstrated that retinoic acid (RA) treatment stimulated annexin-mediated Ca(2+) influx into growth plate chondrocytes leading to a significant increase in cytosolic Ca(2+), whereas K-201, a specific annexin Ca(2+) channel blocker, inhibited this increase markedly. The present study addressed the hypothesis that annexin-mediated Ca(2+) influx into growth plate chondrocytes is a major regulator of terminal differentiation, mineralization, and apoptosis of these cells. We found that K-201 significantly reduced up-regulation of expression of terminal differentiation marker genes, such as cbfa1, alkaline phosphatase (APase), osteocalcin, and type I collagen in RA-treated cultures. Furthermore, K-201 inhibited up-regulation of annexin II, V, and VI gene expression in these cells. RA-treated chondrocytes released mineralization-competent matrix vesicles, which contained significantly higher amounts of annexins II, V, and VI as well as APase activity than vesicles isolated from untreated or RA/K-201-treated cultures. Consistently, only RA-treated cultures showed significant mineralization. RA treatment stimulated the whole sequence of terminal differentiation events, including apoptosis as the final event. After a 6-day treatment gene expression of bcl-2, an anti-apoptotic protein, was down-regulated, whereas caspase-3 activity and the percentage of TUNEL-positive cells were significantly increased in RA-treated cultures compared with untreated cultures. Interestingly, the cytosolic calcium chelator BAPTA-AM and K-201 protected RA-treated chondrocytes from undergoing apoptotic changes, as indicated by higher bcl-2 gene expression, reduced caspase-3 activity, and the percentage of TUNEL-positive cells. In conclusion, annexin-mediated Ca(2+) influx into growth plate chondrocytes is a positive regulator of terminal differentiation, mineralization, and apoptosis events in growth plate chondrocytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号