首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers
Authors:De Tullio Luisina  Maggio Bruno  Fanani María Laura
Institution:Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, República Argentina.
Abstract:We describe the localization of Alexa-488-labeled SMase in SM/ceramide (Cer) lipid monolayers containing segregated liquid-condensed (LC) Cer-enriched domains surrounded by a continuous liquid-expanded (LE) SM-enriched phase. Langmuir-Schaefer films were made in order to visualize the labeled enzyme. Independently of initial conditions Alexa-SMase is preferably localized in the SM-enriched LE phase and it is not enriched at the domain boundaries. A novel mechanism is proposed for the action of SMase, which can also explain the regulatory effect of the surface topography on the enzyme activity. The homogeneous enzymatic generation of Cer in the LE phase leads to a meta-stable, kinetically trapped, supersaturated mixed monolayer. This effect acts as driving force for the segregation of the Cer-enriched domain following classical nucleation mechanisms. Accordingly, the number and size of Cer-enriched domains are determined by the extent of Cer supersaturation in the LE phase rather than by the SMase local activity. The kinetic barrier for nucleation, for which a compositional gap of at least 53 mol% of Cer is necessary to reach a thermodynamically stable LC phase, can explain the lag time to reaching full catalytic activity. Altogether, the data support an "area-activated mechanism," in which the enzyme is homogeneously active over the LE surface.
Keywords:lipid phase coexistence  fluorescent-labeled sphingomyelinase  domain nucleation  ceramide  epifluorescence microscopy  lateral segregation  Langmuir-Schaefer films
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号