首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of selective inhibition of cytochrome P-450 omega-hydroxylases and ischemic preconditioning in myocardial protection
Authors:Nithipatikom Kasem  Endsley Michael P  Moore Jeannine M  Isbell Marilyn A  Falck John R  Campbell William B  Gross Garrett J
Institution:Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
Abstract:Cytochrome P-450 (CYP) omega-hydroxylases and their arachidonic acid (AA) metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), produce a detrimental effect on ischemia-reperfusion injury in canine hearts, and the inhibition of CYP omega-hydroxylases markedly reduces myocardial infarct size expressed as a percentage of the area at risk (IS/AAR, %). In this study, we demonstrated that a specific CYP omega-hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly reduced 20-HETE production during ischemia-reperfusion and reduced myocardial infarct size compared with control 19.5 +/- 1.0% (control), 9.6 +/- 1.5% (0.40 mg/kg DDMS), 4.0 +/- 2.0% (0.81 mg/kg DDMS), P < 0.01]. In addition, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE, a putative 20-HETE antagonist) significantly reduced myocardial infarct size from control 10.3 +/- 1.3% (0.032 mg/kg 20-HEDE) and 5.9 +/- 1.9% (0.064 mg/kg 20-HEDE), P < 0.05]. We further demonstrated that one 5-min period of ischemic preconditioning (IPC) reduced infarct size to a similar extent as that observed with the high doses of DDMS and 20-HEDE, and the higher dose of DDMS given simultaneously with IPC augmented the infarct size reduction 9.9 +/- 2.8% (IPC) to 2.5 +/- 1.4% (0.81 mg/kg DDMS), P < 0.05] to a greater degree than that observed with either treatment alone. These results suggest an important negative role for endogenous CYP omega-hydroxylases and their product, 20-HETE, to exacerbate myocardial injury in canine myocardium. Furthermore, for the first time, this study demonstrates that the effect of IPC and the inhibition of CYP omega-hydroxylase synthesis (DDMS) or its actions (20-HEDE) may have additive effects in protecting the canine heart from ischemia-reperfusion injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号