首页 | 本学科首页   官方微博 | 高级检索  
     


Site-directed mutagenesis of CCR2 identified amino acid residues in transmembrane helices 1, 2, and 7 important for MCP-1 binding and biological functions
Authors:Gavrilin Mikhail A  Gulina Irina V  Kawano Tomonori  Dragan Sofya  Chakravarti Leena  Kolattukudy Pappachan E
Affiliation:Davis Heart and Lung Reseach Institute, The Ohio State University, Columbus, OH 43210, USA. gavrilin.1@osu.edu
Abstract:Monocyte chemotactic protein-1 (MCP-1) binds its G-protein-coupled seven transmembrane (TM) receptor, CCR2B, and causes infiltration of monocytes/macrophages into areas of injury, infection or inflammation. To identify functionally important amino acid residues in CCR2B, we made specific mutations of nine residues selected on the basis of conservation in chemokine receptors and located TM1 (Tyr(49)), TM2 (Leu(95)), TM3 (Thr(117) and Tyr(120)), and TM7 (Ala(286), Thr(290), Glu(291), and His(297)) and in the extracellular loop 3 (Glu(278)). MCP-1 binding was drastically affected only by mutations in TM7. Reversing the charge at Glu(291) (E291K) and at His(297) (H297D) prevented MCP binding although substitution with Ala at either site had little effect, suggesting that Glu(291) and His(297) probably stabilize TM7 by their ionic interaction. E291A elicited normal Ca(2+) influx. H297A, Y49F in TM1 and L95A in TM2 that showed normal MCP-1 binding did not elicit Ca(2+) influx and elicited no adenylate cyclase inhibition at any MCP-1 concentration. MCP-1 treatment of HEK293 cells caused lamellipodia formation only when they expressed CCR2B. The mutants that showed no Ca(2+) influx and adenylate cyclase inhibition by MCP-1 treatment showed lamellipodia formation and chemotaxis. Our results show that induction of lamellipodia formation, but not Ca(2+) influx and adenylate cyclase inhibition, is necessary for chemotaxis.
Keywords:Monocytes/macrophages   Chemokines   Chemotaxis   Signal transduction
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号