首页 | 本学科首页   官方微博 | 高级检索  
     


Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone
Authors:H. W. Fricke  B. Knauer
Affiliation:(1) Max-Planck-Institut für Verhaltensphysiologie, 8131 Seewiesen, Germany;(2) Heizz-Steinitz-Marine Laboratory, Eilat, Israel
Abstract:Summary This is the first study based on numerical analysis of the abundance of 11 scleractinian corals of depths at between 100–210 m in the Red Sea twilight zone. Two distinct coral communities were found: a Leptoseris fragilis community at a depth of 100–130 m (zone 1) and a Dendrophillia horsti community below 130 m (zone 2, 3). Population densities and coral coverage are very low; distribution of individuals is highly clumped. Highest observed densities on 100 m2 were 2720 individuals for L. fraglis, 2720 for D. horsti and 2260 for Javania insignis. Calculated coverage rates were maximally 3.6% (L. fragilis), 0.08% (D. horsti) and 0.11% (J. insignis). L. fragilis, the only symbiont bearing coral, was very abundant. It has an unusual depth range for a photosynthesising coral. Coral density is only weakly correlated with hard bottom coverage. Species diversity with an average of 8 species is highest at 120–170 m and decreases in shallower and deeper water. The study depth range is a transient zone for coral distribution. It contains the upper distribution limits of a few ldquodeep seardquo corals and the lower ones of several shallower water species. Ahermatypic corals, collected at 160–170 m depth, were transplanted from their original depth to 159, 118, 70 and 40 m; after one year most species survived transplantation far beyond their upper distributional limits. The symbiotic L. fragilis, collected at 120 m, survived transplantation to deep water (159 m) as well as shallow zones (90, 70 and 40 m). The study demonstrates the feasibility of line-transect methods for coral community studies with a submersible.
Keywords:Red Sea  Corals  Twilight zone  Symbiosis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号