首页 | 本学科首页   官方微博 | 高级检索  
     


Whole genome comparison of six Crocosphaera watsonii strains with differing phenotypes
Authors:Shellie R. Bench  Philip Heller  Ildiko Frank  Martha Arciniega  Irina N. Shilova  Jonathan P. Zehr
Affiliation:Ocean Sciences Department, University of California Santa Cruz, , Santa Cruz, CA, 95064 USA
Abstract:Crocosphaera watsonii, a unicellular nitrogen‐fixing cyanobacterium found in oligotrophic oceans, is important in marine carbon and nitrogen cycles. Isolates of C. watsonii can be separated into at least two phenotypes with environmentally important differences, indicating possibly distinct ecological roles and niches. To better understand the evolutionary history and variation in metabolic capabilities among strains and phenotypes, this study compared the genomes of six C. watsonii strains, three from each phenotypic group, which had been isolated over several decades from multiple ocean basins. While a substantial portion of each genome was nearly identical to sequences in the other strains, a few regions were identified as specific to each strain and phenotype, some of which help explain observed phenotypic features. Overall, the small‐cell type strains had smaller genomes and a relative loss of genetic capabilities, while the large‐cell type strains were characterized by larger genomes, some genetic redundancy, and potentially increased adaptations to iron and phosphorus limitation. As such, strains with shared phenotypes were evolutionarily more closely related than those with the opposite phenotype, regardless of isolation location or date. Unexpectedly, the genome of the type‐strain for the species, C. watsonii WH8501, was quite unusual even among strains with a shared phenotype, indicating it may not be an ideal representative of the species. The genome sequences and analyses reported in this study will be important for future investigations of the proposed differences in adaptation of the two phenotypes to nutrient limitation, and to identify phenotype‐specific distributions in natural Crocosphaera populations.
Keywords:exopolysaccharide biosynthesis  genome comparison  genome evolution  marine cyanobacteria  nitrogen fixation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号