首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Computing the direction of heading from affine image flow
Authors:Jack M H Beusmans
Institution:(1) Center for Neural Science, New York University, 4 Washington Place, 10003 New York, NY, USA
Abstract:Observers moving through a three-dimensional environment can use optic flow to determine their direction of heading. Existing heading algorithms use cartesian flow fields in which image flow is the displacement of image features over time. I explore a heading algorithm that uses affine flow instead. The affine flow at an image feature is its displacement modulo an affine transformation defined by its neighborhood. Modeling the observer's instantaneous motion by a translation and a rotation about an axis through its eye, affine flow is tangent to the translational field lines on the observer's viewing sphere. These field lines form a radial flow field whose center is the direction of heading. The affine flow heading algorithm has characteristics that can be used to determine whether the human visual system relies on it. The algorithm is immune to observer rotation and arbitrary affine transformations of its input images; its accuracy improves with increasing variation in environmental depth; and it cannot recover heading in an environment consisting of a single plane because affine flow vanishes in this case. Translational field lines can also be approximated through differential cartesian motion. I compare the performance of heading algorithms based on affine flow, differential cartesian flow, and least-squares search.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号