首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity
Authors:Qing Chao  Xiao-Yu Liu  Ying-Chang Mei  Zhi-Fang Gao  Yi-Bo Chen  Chun-Rong Qian  Yu-Bo Hao  Bai-Chen Wang
Institution:1. Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
2. State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, 150040, China
3. Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
Abstract:Phosphoenolpyruvate carboxykinase (PEPCK)—the major decarboxylase in PEPCK-type C4 plants—is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539–546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301–311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号