首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis and restriction enzyme analysis of oligodeoxyribonucleotides containing the anti-cancer drug 2',2'-difluoro-2'-deoxycytidine.
Authors:F C Richardson  K K Richardson  J S Kroin  and L W Hertel
Institution:Toxicology Research Laboratories, Eli Lilly and Company, Greenfield, IN 46140.
Abstract:The anti-cancer drug 2',2'-difluoro-2'-deoxycytidine (dFdC) is internally incorporated into DNA in vitro. To determine the effects of this incorporation on DNA structure and function, the beta-cyanoethyl phosphoramidite of dFdC was synthesized and oligodeoxyribonucleotides containing dFdC were made using automated solid phase DNA synthesis techniques. Extension of the coupling time was required to achieve high coupling efficiency, suggesting a significant reduction in the rate of phosphotriester formation. Insertion of dFdC 5' into the recognition sequence of restriction enzymes HpaII and KpnI reduced the rate of cutting by 4% and 14% over 60 minutes. This reduction is similar to the effects seen with arabinofuranosylcytidine (ara-C) but small compared to the reductions caused by base analogues and phosphothioates. Insertion of dFdC into the BamHI recognition sequence, but not 5' to the cut site, did not alter the rate of cutting/recognition. The presence of a single dFdC reduced the Tm's of oligomers by 2-4 degrees C, depending on sequence and location. These results demonstrate that, once incorporated into DNA, dFdC does not greatly alter recognition between DNA and restriction enzymes; however, it does significantly alter duplex stability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号