首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression and regulation of antioxidant enzymes in the developing limb support a function of ROS in interdigital cell death
Authors:Schnabel Denhí  Salas-Vidal Enrique  Narváez Verónica  Sánchez-Carbente María del Rayo  Hernández-García David  Cuervo Rodrigo  Covarrubias Luis
Institution:Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, Cuernavaca, Mor. 62250, México.
Abstract:Vertebrate limb development is a well-studied model of apoptosis; however, little is known about the intracellular molecules involved in activating the cell death machinery. We have shown that high levels of reactive oxygen species (ROS) are present in the interdigital 'necrotic' tissue of mouse autopod, and that antioxidants can reduce cell death. Here, we determined the expression pattern of several antioxidant enzymes in order to establish their role in defining the areas with high ROS levels. We found that the genes encoding the superoxide dismutases and catalase are expressed in autopod, but they are downregulated in the interdigital regions at the time ROS levels increased and cell death was first detected. The possible role of superoxide and/or peroxide in activating cell death is supported by the protective effect of a superoxide dismutase/catalase mimetic. Interestingly, we found that peroxidase activity and glutathione peroxidase-4 gene (Gpx4) expression were restricted to the non-apoptotic tissue (e.g., digits) of the developing autopod. Induction of cell death with retinoic acid caused an increase in ROS and decrease in peroxidase activity. Even more inhibition of glutathione peroxidase activity leads to cell death in the digits, suggesting that a decrease in antioxidant activity, likely due to Gpx4, caused an increase in ROS levels, thus triggering apoptosis.
Keywords:Mouse  Autopod  Morphogenesis  Digits  Death  Apoptosis  Oxidative stress  Peroxidase  Catalase  Superoxide dismutase  Reactive oxygen species  Apoptosis  Limb development  Mercaptosuccinate
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号