首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection
Authors:Lefu Lan  Thomas S Murray  Barbara I Kazmierczak  Chuan He
Institution:Department of Chemistry, 929 East 57th Street, The University of Chicago, Chicago, IL 60637, USA.;
Department of Pediatrics and Laboratory Medicine and;Department of Internal Medicine and Microbial Pathogenesis, Yale University, 333 Cedar St., New Haven, CT 06520, USA.
Abstract:Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR ( o xidative s tress response and p igment production R egulator) gene in Pseudomonas aeruginosa . Deletion of ospR leads to a significant induction in H2O2 resistance. This effect is mediated by de-repression of PA2826 , which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and β-lactam resistance in P. aeruginosa via a PA2826 -independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H2O2 or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and β-lactam resistance . Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号