首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen Fixation by Subterranean Clover at Varying Stages of Nodule Dehydration: I. CARBOHYDRATE STATUS AND SHORT-TERM RECOVERY OF NODULATED ROOT RESPIRATION
Authors:DAVEY, ALLAN G.   SIMPSON, RICHARD J.
Abstract:The nodule water potential ({varepsilon}nod) of subterranean clover (Trifoliumsubterraneum L.) cv. Seaton Park incubated in a flow-throughgas-exchange system was induced to decline independently ofleaf water potential ({varepsilon}1) by passing a continuous dry airstreamover the nodulated roots of intact well-watered plants. Reducedtranspiration by plants whose nodules had become dehydratedwas hypothesized to be related to the decline in nitrogen fixation.Whole-plant and nodule soluble carbohydrates increased as {varepsilon}noddeclined. Throughout an 8 d period of continual nodule dehydration,the gaseous diffusion resistance of nodules increased and theoptimum pO2 for nitrogenase activity declined from 52 to 28kPa. Following rehydration of the nodulated roots between days4 and 5 and between days 7 and 8, nodulated root respirationincreased to or above pre-stress levels whereas nitrogenaseactivity did not recover. Re-establishment of initial ratesof nodulated root respiration was due to the stimulation ofgrowth and maintenance respiration, not to the respiration coupledto nitrogenase activity. Although no recovery of nitrogenaseactivity occurred, the elapsed time from the introduction ofacetylene into the gas stream flowing past the nodules untilmeasurement of the acetylene-induced decline in nitrogenaseactivity, decreased substantially. This was characteristic ofan increase in the permeability of the nodules to gaseous diffusionupon rehydration. However, calculated values of nodule diffusionresistance after the 24 h periods of rehydration did not indicateany recovery of gaseous diffusion resistance based on measurementsof the respiration coupled to nitrogenase activity. Hence, useof a diffusion analogue (i.e. Fick's Law) in conjunction withnodule respiratory CO2 efflux was unable to predict changesin permeability of the variable barrier of legume nodules followingnodule dehydration and recovery. Key words: Subterranean clover, gaseous diffusion, respiration, carbohydrates, drought
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号