首页 | 本学科首页   官方微博 | 高级检索  
     


Multimodal inhibitory innervation of the gill ofAplysia Juliana
Authors:Makoto Kurokawa  Kiyoaki Kuwasawa
Affiliation:1. Department of Biology, Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya-ku, 158, Tokyo, Japan
Abstract:
1. The excitatory and inhibitory influences on the gill ofAplysia Juliana, which are mediated by the branchial nerve, were studied by means of electrophysiological techniques. Excitatory and inhibitory pathways in the nerve were stimulated simultaneously or selectively.
2. The branchial nerve was found to contain both excitatory and inhibitory pathways which did not contain synapses in the branchial ganglion. The excitatory pathways caused longitudinal shortening of the gill along the efferent branchial vessel and the inhibitory pathways were modulatory, depressing the longitudinal shortening.
3. Branchial nerve stimulation elicited two types of excitatory junctional potential (EJP), which were not mediated by the branchial ganglion, in a muscle cell of the efferent branchial vessel. One type was attributed to the central motor neuron and the other type to a motor neuron which is probably situated in the neural plexus of the gill periphery.
4. Four inhibitory pathways from the central nervous system to the gill were found.
5. Inhibitory junctional potentials (IJPs) recorded from muscle cells of the efferent branchial vessel in response to branchial nerve stimulation did not have monosynaptic characteristics. It is thought that inhibitory motor neurons which were activated by the branchial nerve might exist at the neural plexus of the gill.
6. A single EJP which has been induced by a stimulus pulse applied to the excitatory pathway of the branchial nerve may be depressed in an all-or-none manner by a stimulus pulse applied to the inhibitory pathway, if this is done within a distinct short period prior to or after the stimulus inducing the EJP. This indicates that the central motor neuron receives presynaptic inhibition at its periphery.
7. The motor neurons of the neural plexus seem to receive inhibitory innervation. Suppression of endogenous EJPs in the efferent vessel persisted for a long period even after cessation of stimulation.
8. A certain branchioganglionic neuron (BGN) was found to receive inhibitory postsynaptic potential (IPSP) inputs from the branchial nerve.
9. The multimodality of both the excitatory and the inhibitory pathways in the branchial nerve may explain the compound neural modulations of gill movements.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号