Effects of motility inhibitors during sea urchin fertilization : Microfilament inhibitors prevent sperm incorporation and restructuring of fertilized egg cortex, whereas microtubule inhibitors prevent pronuclear migrations |
| |
Authors: | Gerald Schatten Heide Schatten |
| |
Abstract: | The sensitivity of specific stages of fertilization to microfilament inhibitors (cytochalasins B (CB), D (CD), and E (CE) and phalloidin) and to inhibitors of microtubule assembly (colcemid (CMD), colchicine (CLC), griseofulvin (GSF), maytansine (MAY), nocodazole (NCD), podophyllotoxin (PDP), and vinblastine (VB)) was investigated using differential interference contrast, time-lapse video microscopy of the sea urchin Lytechinus variegatus. Cytochalasins (CDCE>CB) will prevent sperm incorporation if added prior to or simultaneous with insemination. Sperm-egg fusion and the cortical reaction appear normal, but then the subsequent elevation of the fertilization coat lifts and eventually detaches the ‘fertilizing’ sperm from the egg plasma membrane. When the cytochalasins are added after fusion, the forming fertilization cone is rapidly resorbed, and the lateral displacement of the sperm along the egg cortex is terminated; the pronuclear migrations and mitoses occur normally though cytokinesis is never observed. Cytochalasin treatment before or within 2 min of insemination results in the development of aberrant egg cortices, whereas cytochalasin treatments after 2 min post-fusion have little effect. Phalloidin results in large and long-lasting fertilization cones and a retardation of the rate of sperm incorporation. Eggs exposed to any of the microtubule inhibitors 15 min prior to insemination will incorporate the spermatozoon, though the formation of the sperm aster and the accompanying pronuclear migrations are prevented. Interestingly, the final stage of sperm incorporation involving a lateral displacement of the sperm along the egg cortex is greater (27.1 vs 12.4 μm in controls) and faster (5.4 vs 3.5 μm/min in controls) in microtubule-inhibited eggs. GSF and VB, which readily permeate fertilized eggs, will prevent the formation of the sperm aster if added 3 min after sperm-egg fusion, they will prevent the migration of the female pronucleus if added 5 or 7 min after sperm-egg fusion, pronuclear centration if added 10 min post-fusion, and syngamy if added 12 min post-fusion. CLC- or CMD- treated eggs will develop normally if these drugs are photochemically inactivated with 366 nm light within 4 min post-fusion, arguing that sperm incorporation is completely independent of assembling microtubules. These results indicate that microfilament inhibitors will prevent sperm incorporation and the restructuring of the fertilized egg cortex, and that microtubule inhibitors will prevent the formation and functioning of the sperm aster during the pronuclear migrations; an interplay between cortical microfilaments and cytoplasmic microtubules appears required for the successful completion of fertilization. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|