首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid maize breeding with doubled haploids: V. Selection strategies for testcross performance with variable sizes of crosses and S1 families
Authors:Thilo Wegenast  H. Friedrich Utz  C. Friedrich H. Longin  Hans Peter Maurer  Baldev S. Dhillon  Albrecht E. Melchinger
Affiliation:1. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
2. Limagrain Verneuil Holding, BP 58 Route de Lavardac, 47600, Nérac, France
3. State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
Abstract:In hybrid maize (Zea mays L.) breeding, doubled haploids (DH) are increasingly replacing inbreds developed by recurrent selfing. Doubled haploids may be developed directly from S0 plants in the parental cross or via S1 families. In both these breeding schemes, we examined 2 two-stage selecting strategies, i.e., considering or ignoring cross and family structure while selection among and within parental crosses and S1 families. We examined the optimum allocation of resources to maximize the selection gain ΔG and the probability P(q) of identifying the q% best genotypes. Our specific objectives were to (1) determine the optimum number and size of crosses and S1 families, as well as the optimum number of test environments and (2) identify the superior selection strategy. Selection was based on the evaluation of testcross progenies of (1) DH lines in both stages (DHTC) and (2) S1 families in the first stage and of DH lines within S1 families in the second stage (S1TC-DHTC) with uniform and variable sizes of crosses and S1 families. We developed and employed simulation programs for selection with variable sizes of crosses and S1 families within crosses. The breeding schemes and selection strategies showed similar relative efficiency for both optimization criteria ΔG and P (0.1%). As compared with DHTC, S1TC-DHTC had larger ΔG and P (0.1%), but a higher standard deviation of ΔG. The superiority of S1TC-DHTC was increased when the selection was done among all DH lines ignoring their cross and family structure and using variable sizes of crosses and S1 families. In DHTC, the best selection strategy was to ignore cross structures and use uniform size of crosses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号