首页 | 本学科首页   官方微博 | 高级检索  
     


High-resolution differential scanning calorimetric analysis of the subunits of Escherichia coli aspartate transcarbamoylase
Authors:V Edge  N M Allewell  J M Sturtevant
Abstract:The thermal denaturation of the catalytic (c3) and regulatory (r2) subunits of Escherichia coli aspartate transcarbamoylase (c6r6) in the absence and presence of various ligands has been studied by means of highly sensitive differential scanning calorimetry. The denaturation of both types of subunit is irreversible as judged by the facts that the proteins coagulate when heated and that no endotherm is observed when previously scanned protein is rescanned. Despite this apparent irreversibility, there is empirical justification for analyzing the calorimetric data in terms of equilibrium thermodynamics as embodied in the van't Hoff equation. The observed curves of excess apparent specific heat vs. temperature are asymmetric and can be expressed within experimental uncertainty as the sums of sequential two-state steps, a minimum of two steps being required for r2 and three for c3. As previously reported [Vickers, K. P., Donovan, J. W., & Schachman, H. K. (1978) J. Biol. Chem. 253, 8493-8498], the addition of the effectors ATP and CTP raises the denaturation temperature of r2 and lowers that of c3 while the addition of the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate raises the denaturation temperature of c3 and lowers that of r2. These effects vary with ligand concentration in the manner expected from the van't Hoff equation, indicating that they are simply manifestations of Le Chatelier's principle rather than being due to "stabilization" or "destabilization" of the proteins. The denaturational enthalpy is increased in those cases of ligand binding in which the denaturation temperature is increased, because of the contribution from the enthalpy of dissociation of the ligand.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号