首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient information visualization in LCA: approach and examples
Authors:Harald?E.?Otto  author-information"  >  author-information__contact u-icon-before"  >  mailto:otto@cim.pe.u-tokyo.ac.jp"   title="  otto@cim.pe.u-tokyo.ac.jp"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Karl?G.?Mueller,Fumihiko?Kimura
Affiliation:(1) Department of Precision Engineering, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, 113-8656 Tokyo, Japan
Abstract:Aim, Scope and Background  The data-intensive nature of life cycle assessment (LCA), even for non-complex products, quickly leads to the utilization of various methods of representing the data in forms other than written characters. Up until now, traditional representations of life cycle inventory (LCI) data and environmental impact analysis (EIA) results have usually been based on 2D and 3D variants of simple tables, bar charts, pie charts and x/y graphs. However, these representation methods do not sufficiently address aspects such as representation of life cycle inventory information at a glance, filtering out data while summarizing the filtered data (so as to reduce the information load), and representation of data errors and uncertainty. Main Features  This new information representation approach with its glyph-based visualization method addresses the specific problems outlined above, encountered when analyzing LCA and EIA related information. In particular, support for multi-dimensional information representation, reduction of information load, and explicit data feature propagation are provided on an interactive, computer-aided basis. Results  Three-dimensional, interactive geometric objects, so called OM-glyphs, were used in the visualization method introduced, to represent LCA-related information in a multi-dimensional information space. This representation is defined by control parameters, which in turn represent spatial, geometric and retinal properties of glyphs and glyph formations. All relevant analysis scenarios allowed and valid can be visualized. These consist of combinations of items for the material and energy inventories, environmental items, life cycle phases and products, or their parts and components. Individual visualization scenarios, once computed and rendered on a computer screen, can then interactively be modified in terms of visual viewpoint, size, spatial location and detail of data represented, as needed. This helps to increase speed, efficiency and quality of the assessment performance, while at the same time considerably reducing mental load due to the more structured manner in which information is represented to the human expert. Conclusions  The previous paper in this series discussed the motivation for a new approach to efficient information visualization in LCA and introduced the essential basic principles. This second paper offers more insight into and discussion on technical details and the framework developed. To provide a means for better understanding the visualization method presented, examples have been given. The main purpose of the examples, as already indicated, is to demonstrate and make transparent the mapping of LCA related data and their contexts to glyph parameters. Those glyph parameters, in turn, are used to generate a novel form of sophisticated information representation which is transparent, clear and compact, features which cannot be achieved with any traditional representation scheme. Outlook  Final technical details of this approach and its framework will be presented and discussed in the next paper. Theoretical and practical issues related to the application of this visualization method to the computed life cycle inventory data of an actual industrial product will also be discussed in this next paper.
Keywords:Glyph rendering  information visualization  life cycle assessment (LCA)  life cycle inventory  life cycle data set mapping  multi-dimensional information space
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号