首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish
Authors:Claudia AO Stuermer
Institution:
  • University of Konstanz, Department of Biology, 78465 Konstanz, Germany
  • Abstract:The two proteins reggie-1 and reggie-2 (flotillins) were identified in axon-regenerating neurons in the central nervous system and shown to be essential for neurite growth and regeneration in fish and mammals. Reggies/flotillins are microdomain scaffolding proteins sharing biochemical properties with lipid raft molecules, form clusters at the cytoplasmic face of the plasma membrane and interact with signaling molecules in a cell type specific manner. In this review, reggie microdomains, lipid rafts, related scaffolding proteins and caveolin—which, however, are responsible for their own microdomains and functions—are introduced. Moreover, the function of the reggies in axon growth is demonstrated: neurons fail to extend axons after reggie knockdown. Furthermore, our current concept of the molecular mechanism underlying reggie function is presented: the association of glycosyl-phophatidyl inositol (GPJ)-anchored surface proteins with reggie microdomains elicits signals which activate src tyrosine and mitogen-activated protein kinases, as well as small guanosine 5′-triphosphate-hydrolyzing enzymes. This leads to the mobilization of intracellular vesicles and to the recruitment of bulk membrane and specific cargo proteins, such as cadherin, to specific sites of the plasma membrane such as the growth cone of elongating axons. Thus, reggies regulate the targeted delivery of cargo—a process which is required for process extension and growth. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
    Keywords:Axon regeneration  Microdomain  Reggie/flotillin  Recruitment  Targeted delivery
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号