首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorylation of the 12 S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds
Authors:Wan Lianglu  Ross Andrew R S  Yang Jingyi  Hegedus Dwayne D  Kermode Allison R
Institution:Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, 25/25 Putthamonthol Road 4, Salaya, Nakon Pathom 73170, Thailand.
Abstract:The present study characterized conserved residues in a GST (glutathione transferase) in the active-site region that interacts with glutathione. This region of the active site is near the glycine moiety of glutathione and consists of a hydrogen bond network. In the GSTD (Delta class GST) studied, adGSTD4-4, the network consisted of His(38), Met(39), Asn(47), Gln(49), His(50) and Cys(51). In addition to contributing to glutathione binding, this region also had major effects on enzyme catalysis, as shown by changes in kinetic parameters and substrate-specific activity. The results also suggest that the electron distribution of this network plays a role in stabilization of the ionized thiol of glutathione as well as impacting on the catalytic rate-limiting step. This area constitutes a second glutathione active-site network involved in glutathione ionization distinct from a network previously observed interacting with the glutamyl end of glutathione. This second network also appears to be functionally conserved in GSTs. In the present study, His(50) is the key basic residue stabilized by this network, as shown by up to a 300-fold decrease in k(cat) and 5200-fold decrease in k(cat)/K(m) for glutathione. Although these network residues have a minor role in structural integrity, the replaced residues induced changes in active-site topography as well as generating positive co-operativity towards glutathione. Moreover, this network at the glycine moiety of GSH (glutathione) also contributed to the 'base-assisted deprotonation model' for GSH ionization. Taken together, the results indicate a critical role for the functionally conserved basic residue His(50) and this hydrogen bond network in the active site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号